
New HMAC Message Patches: Secret Patch

and CrOw Patch

Student Name: Nishant Sharma

IIIT-D-MTech-CS-IS-12-013

May 2, 2014

Indraprastha Institute of Information Technology

New Delhi

Thesis Committee

Dr. Somitra Sanadhya, IIIT Delhi (Chair)

Dr. Shweta Agrawal, IIT Delhi

Dr. Debajyoti Bera, IIIT Delhi

Submitted in partial fulfilment of the requirements

for the Degree of M.Tech. in Computer Science,

with specialization in Information Security

©2014 Nishant Sharma

All rights reserved

Keywords: HMAC, related key attack, colliding key pairs, indifferentiability, distin-

guisher, internal state recovery

Certificate

This is to certify that the thesis titled "New HMAC Message Patches: Secret

Patch and CrOw Patch" submitted by Nishant Sharma for the partial fulfilment

of the requirements for the degree of Master of Technology in Computer Science

& Engineering (Information Security) is a record of the bonafide work carried out

by him under our guidance and supervision in the Security and Privacy group at

Indraprastha Institute of Information Technology, Delhi. This work has not been

submitted anywhere else for the reward of any other degree.

Dr. Donghoon Chang Dr. Somitra Sanadhya

IIIT Delhi IIIT Delhi

4

Abstract

HMAC or keyed-hash message authentication code is a security implementation

using cryptographic hash function (where hash function is iterative i.e. classi-

cal Merkle-Damgård construction [7] [12]) and a secret key. It was designed by

Bellare, Canetti and Krawczyk in 1996 [3]. It was subsequently adopted by IETF

working group as RFC 2104 [10] and made a standard for authentication in secure

internet protocols. It is widely used in banking industry and secure web connec-

tions via its use in TLS and IPSEC. The security of HMAC was proven in [2] but

this proof of security does not consider related key model.

In Asiacrypt 2012, Peyrin et al. [13] showed related key attacks against HMAC

design. Following this, they also proposed a patching scheme for standard HMAC

and claimed that the proposed patch thwarts their attacks. However they didn't

provide any security proof/explanation for the same.

In this work, we show that the patch proposed by Peyrin et al. [13] will not disallow

their attack for the HMAC construction for certain hash functions. We emphasize

that our approach is valid for the general HMAC construction and not for the stan-

dardized version of HMAC, which uses a specific hash function, namely SHA-1. We

show that the related key attacks of Peyrin et al. still work when HMAC is con-

structed from a "good" cryptographic hash function satisfying collision resistance,

preimage resistance and second preimage resistance under certain circumstances.

On similar lines, in Crypto 2012, Dodis et al. [8] showed differentiability attacks

on HMAC based on weak keys (ambiguous and colliding). In order to thwart the

two types of attacks, we propose two tweaks for thwarting the both attacks. One of

them requires using wrapper patch, while the other uses a new padding scheme for

HMAC. Our first modification requires our new patching schemes for HMAC which

ensure the safety of HMAC scheme from the attacks discussed by Peyrin et al. [13].

Our second modification ensures that the HMAC will not have any colliding keys

hence thwarting the attack of Dodis et al. [8]. Thus we show that the HMAC with

one of our patches and new padding scheme is safe from cycle detection based

related key attacks discussed by Peyrin et al. [13] and indifferentiability attacks

using colliding pairs by Dodis et al. [8].

Acknowledgments

I dedicate this thesis work to my grandparents and parents. Thank you for being

so supportive, without your support this would not have been possible.

I would like to thank Dr. Somitra Kumar Sanadhya and Dr. Donghoon Chang. They

introduced me to the area of cryptography and without them it would have been

impossible to do this work in one year. Dr. Somitra's dedication and devotion to his

work is incomparable. I will always remember the nights that sir spent in his office

for helping me. Dr. Donghoon always motivated me to work on trending problems

in cryptography and also advised me about my career. I was really fortunate to

work with such people.

I thank Dr. Pankaj Jalote and all founding members of IIIT Delhi for creating such

a wonderful institute and giving me an opportunity to study here.

I would also like to take this opportunity to thank everybody who have been a

been part of my life at IIIT-D, especially Sandipan Biswas, Rohit Romley, Rohit

Jain, Gajendra Waghmare, Prateek Sharma, Aritra Dhar, Naufal, Veeru and many

people with whom I had fun and learned many things.

Last but not the least, I thank Dr. Shweta Agrawal from IIT-Delhi for accepting to

be a part of my thesis committee as the external examiner.

Nishant Sharma,

MT12013

i

Contents

1 Introduction 1

1.0.1 Ensuring confidentiality . 1

1.0.2 Ensuring Integrity and Authenticity 2

1.1 Cryptographic Hash Function . 3

1.1.1 Construction of Hash Function . 3

1.1.2 Good Hash Function . 4

1.2 HMAC . 4

2 Related work 6

2.1 Peyrin et al.'s work . 6

2.1.1 Patch proposed by Peyrin et al. 10

2.1.2 Patch P0 . 10

2.2 Dodis et al.'s work . 11

2.2.1 Key padding . 11

2.2.2 Ambiguous keys . 12

2.2.3 Colliding keys . 12

3 Our Contribution 13

3.1 Motivation and Research Problem . 13

3.2 Insecurity of patch proposed by Peyrin et al. 14

3.3 Hash H is Collision, Preimage and Second Preimage Resistant 14

3.4 HMACP0-HP0(K,M) is not secure . 17

3.5 HMACP0-H(K,M) is secure in the Random Oracle Model 19

3.6 Insecurity of any public and reversible patch 20

3.7 Hash HP is CR, PR, Second PR . 20

3.8 HMACP -HP (K,M) is not secure . 22

4 Our two new patch proposals 24

4.1 Secret Patch . 24

ii

4.1.1 Secret Patch SP(K,M) . 24

4.2 One way Patch Ow(M) . 27

4.2.1 Collision Resistant One Way Patch CrOw(M) 27

4.3 Comparison . 29

5 Preventing weak keys based attack with our patches 30

5.1 Existence of colliding pairs . 30

5.1.1 Existence of ambiguous pairs . 30

5.2 Security against attacks . 31

5.2.1 Indifferentiability attacks based on colliding pairs 31

6 Conclusions and Future work 35

iii

List of Figures

1.1 Merkle Damgard Construction . 3

1.2 The HMAC construction . 5

2.1 Basic functions notations . 7

2.2 Cycle and Synchronized cycle structures for Walk A and B 9

2.3 HMACP0-H(K,M) construction. 11

3.1 Possible attack surface during walk . 15

3.2 Hash function HP0 . 15

3.3 Walk Generation using HMACP0-H oracles 18

3.4 Walk A and B entering into same cycle in synchronization 18

3.5 Walk Generation using HMACP0 oracles. 19

3.6 Walk A and B entering into same cycle in synchronization 19

3.7 The HP construction. 20

3.8 Path generation using HMACP -HP oracles. 23

4.1 Path generation using HMACSP oracles. 25

4.2 Oracles HMACSPK2 -H(K1,M) and HMAC
SPK′

2 -H(K1,M
′) 26

4.3 The HMACSPK -H(K,M) construction . 27

4.4 The HMACCrOw-H(K,M) construction . 28

4.5 Path generation using HMACCrOw oracles. 28

4.6 Walk A and B entering into same cycle in synchronization 28

iv

List of Tables

5.1 Summary of colliding keys and ambiguous keys when HMAC is used

with our patches. 32

5.2 Summary of cycle detection based attacks using ambiguous keys when

HMAC is used with our patches. 33

v

Chapter 1

Introduction

From the beginning of human race, correct information has power to transform the

world. Advancement of society increased the importance of correct information

drastically which also led to the need of information protection. As a result mathe-

maticians/scientists defined some complex methods of keeping information secure

in a place or in transit (communication) and termed this area as Cryptography. The

word cryptography is taken from Greek κρυπτός (means "hidden" or "secret"); and

γράφειν, graphein (means "writing") or -λογία, -logia (means "study"), respectively.

Cryptography is an art of hidden writing or study of methods used for hiding secret

information. Cryptography is helping people to protect information from ancient

times to present era of internet. As time progressed, cryptographic techniques as

well as area of applications also changed. Cryptographers and cryptanalyst's war,

which is going on from centuries showed world transition from primitive ceaser

cipher to sophisticated AES. Today, cryptography is almost everywhere as the last

defense against any kind of attack, let it be online transactions on HTTPS/TLS or

file encryption or password storage or secure ID tokens. Cryptography is used to

provide confidentiality, authenticity and integrity.

1.0.1 Ensuring confidentiality

Suppose we have two friends Alice (A) and Bob (B) who like each other and want

to exchange their messages over unsecured channel e.g. B writes his message on

a paper and throws it towards A's window. Now, problem is that A's dad, Charlie

(C) doesn't like this and if he finds out what kind of messages are exchanged, he

may thrash A. Here, they need a strategy so that even if (C) catches a message,

he can't figure out what is the information contained in it. For that, (A) and (B)

must have a secret element, this element may be (i) scheme, also known as the

encryption scheme or (ii) secret input, also known as the key. So, A and B can

either use a secret scheme or publicly known scheme with secret key to communi-

cate secretly. The latter model is preferred in present scenario due to its ease of

1

use. This mechanism of protecting secret communication is known as Encryption.

Encryption used in today's scenario for protecting electronic information. It can

be broadly classified into two types based on key types:

• Symmetric encryption: If both parties i.e. A and B use the same key, then

they are said to be using symmetric encryption. This key is exchanged by

some mechanism before starting communication by using some secure chan-

nel. Some popular symmetric encryption algorithms are DES, AES, 3DES,

Blowfish.

• Asymmetric encryption: If both parties i.e. A and B are using different

keys, then they are said to be using asymmetric encryption. In this scenario

every party has a pair of keys consisting of public key and private key. Public

key is shared with public but private key is kept secret. In case a party say A

wants to send a message to other party say B, then Awill encrypt the message

with B's public key and send it. Now, the keys are mathematically created in

such a way that only the private key can decrypt the cipher encrypted with the

corresponding public key. So, B will receive the message and then decrypt

it using his key. Some popular asymmetric encryption algorithms are RSA,

Diffie Hellman Key Exchange, AlGamal.

The problem of confidentiality can be handled by using encryption techniques. But

it still can't ensure the integrity and authenticity of message.

1.0.2 Ensuring Integrity and Authenticity

Ensuring integrity of a message means that the message which is sent by the

sender reaches the receiver as it is i.e. no third party or communication errors or

data loss can change the content without getting noticed in receiver side. A simple

hash function H can be used to provide integrity check. A sends hash tag t of mes-

sage along with the message to the receiver so that he can recompute the hash tag

t, match it and can ensure that the message is not altered. But if adversary C from

same scenario intercepts the message, he can change the message and generate

a valid tag t using same algorithm H. This happens because in algorithm H used

for hash tag generation is public. As a countermeasure, A instead of using simple

Hash, can use keyed Message Authentication Codes (MACs) which also require a

secret key k to generate the hash tag. Now, even if C intercepts the message he

can change the message but as he doesn't know the key k, he can't generate a valid

tag for the message. Ensuring authenticity of a message means that the receiver

can somehow ensure that the message is sent by the legitimate sender. In keyed

MACs the key k is only known to the sender and the receiver, hence no one else can

2

generate a valid MAC for message, thus ensuring the authenticity. The problem of

integrity and authenticity can be handled by using keyed MACs.

1.1 Cryptographic Hash Function

Cryptographic hash functions are used as building blocks in many cryptographic

protocols and applications. A hash function can take arbitrary size input and pro-

duce a finite size output. A hash function construction consist of two main parts:

• Compression function: A compression function is an underlying function

in a Hash construction which take finite size input and produces finite size

output.

• Iterator: An iterator setup repeats the compression function so that arbitrary

size input can be accepted.

1.1.1 Construction of Hash Function

A cryptographic hash function can be constructed using a block cipher or some

special structure with collision resistant compression function. We will only con-

sider the latter here. TheMerkle-Damgård Construction is famous for construction

hash functions.

Merkle Damgard Construction

f f f
g hashIV

m1 m2 mn||pad

Figure 1.1: Merkle Damgard Construction

The classical Merkle-Damgård construction (MD) [7] [12] was described in Ralph

Merkle's Ph.D. thesis in 1979. Ralph Merkle [12] and Ivan Damgård [7] indepen-

dently proved that the structure is sound: that is, if an appropriate padding scheme

is used and the compression function is collision-resistant, then the hash function

will also be collision resistant. As the compression function can only accept finite

size output, we need to pad the arbitrary size input into multiples of input size it

accepts. This is done by padding the last message with appropriate number of bits.

3

The MD construction is shown in Figure 1.1. The f here is underlying compression

function and g is the finalization function.

Some popular Hash functions based on MD construction are MD5 [14] and SHA-1

[1].

1.1.2 Good Hash Function

A good hash function is a hash function wich satisfy the following conditions:

Preimage Resistance

If there exists no adversary A which can find x given h such that h = H(x) for hash

function H. Then, hash function H is said to be preimage resistant.

Second Preimage Resistance

If there exists no adversary A which can find pair x,x′ such that H(x) = H(x′) but

x 6= x′ for hash function H. Then, hash function H is said to be second preimage

resistant.

Collision Resistance

If there exists no adversary A which can find pair x,x′ such that H(x) = H(x′) for

hash function H. Then, hash function H is said to be collision resistant.

In [6], Coron et al. suggested that a hash function should behave like a random

oracle. In our work we also show that how even a good hash function fails if it is

not random.

1.2 HMAC

HMAC or keyed-hash message authentication code is a security implementation

using cryptographic hash function (where hash function is iterative i.e. MD con-

struction and a secret key. It was designed by Bellare, Canetti and Krawczyk in

1996 [3]. It was subsequently adopted by IETF working group as RFC 2104 [10]

and made a standard for authentication in secure internet protocols. It is widely

used in banking industry and secure web connections via its use in TLS and IPSEC.

The security of HMAC was proven in [2] but this proof of security does not consider

related key model.

4

The HMAC construction [3], using a hash function H, is defined as HMAC(K,M)

= H(K ⊕ opad||H(K ⊕ ipad||M)), where ipad and opad are constants defined as ipad
= 0x363636… 36 and opad = 0x5C5C5C… 5C. H is any cryptographically secure hash

function which takes an arbitrary sized input message M and produces a finite n

bit output h after finalization of l bit internal state. K is the message authentication

secret key shared between the two communicating parties. Let d be the block

length of HMAC which depends on the choice of underlying hash function H. Let

K be the padded version of the key K i.e K = K ‖ 0000..., where |K| = d. We will

only consider key K of length d or d − 1 so we will consider K = K for the rest of

the thesis. The HMAC or HMAC-H(K,M) construction is explained in Figure 1.2.

H(K̄ ⊕ ipad)

H(K̄ ⊕ opad)

t (n-bit)

h (n-bit)||

||

M

Figure 1.2: The HMAC construction

The security of HMAC is proven in terms of its unforgeability. The HMAC construc-

tion as shown in Figure 1.2, uses the same key K to produce two keys: K⊕ ipad and

K ⊕ opad. The relationship between these two keys makes this construction prone

to related key attacks.

Related key attacks are applicable when some relation between the two keys is

known, although the keys themselves may not be known. These attacks have

serious impact. In [13], the authors showed how this relationship can lead to

Distinguishing-R, Distinguishing-H, internal state recovery and forgery attacks on

HMAC (we describe the Distinguishing-R attack later in this work and make some

comments about the others). The authors then proposed a patch for HMAC to pre-

vent the related key attacks. However they have not provided any proof of security

or explanation of the patched HMAC against related key attacks. On similar lines,

Dodis et al. [8] showed differentiability attacks against HMAC using colliding key

pairs.

In this workwe explain how the patch proposed by Peyrin et al. [13] doesn't work for

the general HMAC construction. Our contribution is to provide an efficient patch

which prevents related key attacks based on cycle detection described in [13] on

standardized HMAC as well as the general HMAC construction. We also propose

a modification in the padding scheme of HMAC to ensure that the colliding keys

based attack of Dodis et al. [8] no longer works. We also consider new generic at-

tacks on Hash based MACs discussed in [9]. Their approach is to attack underlying

hash function rather than exploiting the HMAC structure so, is not related to our

work.

5

Chapter 2

Related work

We will now briefly desrcibe the work done by Peyrin et al. and Dodis et al.. We

will try to understand their approach and then try to fix the problems stated.

2.1 Peyrin et al.'s work

Distinguishing-R, distinguishing-H, internal state recovery and forgery attacks against

HMAC scheme were shown in [13]. The HMAC is based on balanced hash func-

tions as dictated by Mihir Bellare et al. in [4]. In this chapter, we briefly describe

the crucial elements which are common to all these attacks.

The HMAC design is inspired by NMAC [2]. However, there is a crucial difference

between NMAC and HMAC. While the NMAC uses two independent keys Kin and

Kout, HMAC uses a single key K and uses the XOR of this single key with two

predefined constants ipad and opad to generate two values Kin and Kout, which are

used as secret keys. The HKin(M) = H(K ⊕ ipad||M) and HKout(M) = H(K ⊕ opad||M)

are the inner and outer hash functions of HMAC with inner and outer keys Kin

and Kout respectively. The attack of [13] utilizes the relationship between these

two keys to construct attacks against HMAC. For comparison, the two designs are

defined below. Note that both the designs use an underlying hash function H. To

denote calls to the same hash function with different IV values, we use the notation

HIV .

NMAC(Kin,Kout,M) = HKout(HKin(M)),

HMAC(K,M) = HK⊕opad(HK⊕ipad(M)).

The attack in the related key scenario is based on the known relation between

the two keys K and K ′, which themselves are not known to the attacker. Treating

HMAC as a special case of NMAC, we can see that Kin and Kout are derived from

6

the same key as Kin = K ⊕ ipad and Kout = K ⊕ opad, where K is the secret key and

ipad and opad are publicly known constants.

Now consider a related key scenario in which the keys for two invocations of HMAC

are K and K ′ = K ⊕ ipad⊕ opad. By the choice of the keys, it is evident that the two
invocations of HMAC use different order of internal functions HKin and HKout. That

is,

(i) HMAC-H(K,M) = HKout(HKin(M)), and

(ii) HMAC-H(K ′,M) = HK′⊕opad(HK′⊕ipad(M))

= HK⊕ipad(HK⊕opad(M))

= HKin(HKout(M)).

Figure 2.1 describes the notations used in subsequent chapters. It also shows

HMAC-H(K,M) and HMAC-H(K ′,M) in terms of inner and outer hash functions.

HKin
HKout HMAC(K,M) HMAC(K ′,M)

Figure 2.1: Explanation for basic functions notations used in subsequent chapters

In [13], the authors showed four different types of attacks on HMAC, namely,

Distinguishing-R, Internal State Recovery, Distinguishing-H and forgery attack.

Distinguishing-R Attack

Let the keys K and K ′ be related by a known expression. Given two oracles FK and

FK′ instantiated with HMAC-H(K,M) and HMAC-H(K ′,M) in the first case and with

random functions R(K,M) and R(K ′,M) in the second case, if an adversary A can
distinguish between these two cases with non-negligible probability then A is said
to successfully perform distinguishing-R attack on the HMAC scheme.

The advantage of the attacker is given by

Adv(A) = |Pr[AHMAC(K,M),HMAC(K′,M) = 1]− Pr[AR(K,M),R(K′,M) = 1]|.

Distinguishing-H Attack

Let the keys K and K ′ be related by a known expression. Given two HMAC oracles

HMAC(K,M) and HMAC(K ′,M) instantiated with known underlying hash h in the

first case and with random underlying function r in the second case, if an adversary

A can distinguish between these two cases with non-negligible probability then A

7

is said to successfully perform distinguishing-R attack on the HMAC scheme.

The advantage of the attacker is given by

Adv(A) = |Pr[AHMACh(K,M),HMACh(K′,M) = 1]− Pr[AHMACr(K,M),HMACr(K′,M) = 1]|.

Internal State Reovery

Internal State Recovery is said to be done successfully if attacker can recover the

l-bit internal state of underlying hash H from n-bit output. This ability is used to

mount Distinguishing-H and Forgery attacks.

Forgery

Forgery is said to be done successfully when attacker can generate a valid tag t for

a message m, which it never queried to HMAC.

• If the message is chosen by attacker then it is Existential Forgery.

• If the message is chosen by challenger the it is Universal Forgery.

We discuss the Distinguishing-R attack below, and leave the rest as all other attacks

as they are also based on the same idea. Please refer [13] for details of these

attacks.

Let us consider two oracles instantiated with HMAC-H(K,M) and HMAC-H(K ′,M).

To proceed with the attack, we generate paths for the corresponding oracle com-

putations and detect cycles in the path.

Path refers to sequence of outputs of specific functions when the previous output

is used as input for the next step. A path may have a cycle so for better reference,

we divide path into two parts, called the ``Cycle part" (the part comprising a cycle)

and a "Tail part" (the part before entering into the cycle).

Cycle refers to a sequence which if encountered in path, repeats after a fixed

interval for infinite time. This interval is dubbed as cycle length.

Cycle detection attack

refers to attack on cryptographic oracle where adversary obtains a path from or-

acle and then tries to find a cycle in the path. By using this attack, the adversary

can launch a distinguishing attack as the probability for the existence of a cycle

may be very small for a random oracle.

8

walk A

walk B

ZA = ZB

walk A

walk B

ZA

ZB

(a) (b)

Figure 2.2: (a) Walk A and B entering into the same cycle at point ZA and ZB respectively.
(b) Walk A and B entering into the same cycle in synchronization i.e. ZA = ZB.

Let y = f(K,x). We define the oracle Of
i (K,M) as repeatedly calling f(K,x) for i

times with the starting value x = M . That is, Of
i (K,M) = f(K,Of

i−1(K,M)). For

example, a 2 step oracle call can be expressed as Of
2 (K,M) = f(K, f(K,M)). A

collision refers to a match in the oracle outputs at different steps, i.e. Of
i (K,M) =

Of
j (K,M) where i 6= j.

The attack can be executed in three steps as follows:

1. Walk A: Choose a random n-bit string and generate a path using oracle HMAC-H(K,M)

for 2n/2+2n/2−1 steps till collision happens. If no collision is found or if the col-

lision happens in the first 2n/2 queries, output 0.

2. Walk B: Choose a random n-bit string and generate a path using oracle HMAC-H(K ′,M)

in the same manner.

3. If the length of the cycles in walk A and walk B are equal, then output 1

otherwise output 0.

The distinguisher works because the probability of collision in the two walks for a

random oracle is significantly different from theHMAC oracle. Thus, the distinguishing-

R attack can be easily executed by comparing the cycle lengths. The other three at-

tacks described in [13], namely internal state recovery, forgery and distinguishing-

H, also work on the same principle.

A brief explanation of why the attack works is as follows. If cycle generated in

walk A and walk B have the same length then it is the same cycle. In normal

scenario, the entry points of walkA andwalkB (depicted as ZA and ZB in Fig. 2.2(a))

are at different positions. We know that in a cycle, the input and the output of

HMAC-H(K,M) will be the intermediate internal state of HMAC-H(K ′,M) and vice

versa. However they can't be figured out due to the different entry points. If we

have a synchronized cycle, i.e. collisions taking place on the tails of Path A and

Path B so that they enter the cycle in synchronization (i.e. ZA = ZB as shown in

Fig. 2.2(b)), then the internal state can be recovered and the attacker can perform

all these attacks. For details, we direct the reader to [13].

9

The main idea behind all these attacks is to obtain a cycle or a synchronized cycle.

If we can prevent the adversary from obtaining a cycle then all these attacks will

be thwarted.

2.1.1 Patch proposed by Peyrin et al.

In [13], the authors state that the choice of ipad and opad is not anecdotal. If any

other random pair of constants is used as ipad and opad then the attacks may work

for all key sizes. Peyrin et al. show that related key pairs which allow disntinguish-

ing attacks only exist for keys of length ≥ d − 1, where d is the block length of the

underlying hash function.

The authors then propose few patching schemes which can thwart their attacks by

preventing the formation of cycles. The schemes proposed and some comment on

the proposal as provided in [13] are as follows:

1. Use of different IVs in inner and outer instances of HMAC. It was rejected as

it requires modification of the HMAC implementation.

2. Truncating the output of HMAC. It was also rejected as the expected generic

security of MAC algorithm reduces due to this change.

3. XORing some distinct constants to inner and/or outer hash calls. As explained

in [13], this patch does not work since the attacker can suitably modify its

query strategy and can still get synchronized chains.

4. Adding an extra bit to the input of outer hash call. It was also rejected since

the attacker can still get synchronized chains by modifying his query strategy.

5. To prepend a 0 bit (or byte) to the inputmessage before passing it to theHMAC

construction. The authors of [13] claim that this patch successfully prevents

adversary from getting cycles and the additional overhead of ading 1 bit (or

byte) to the message is insignificant. This patch has the additional advantage

of the feasibility of being implemented by means of a message wrapper while

keeping the HMAC implementation unchanged.

2.1.2 Patch P0

As mentioned above, after comparing all the proposals for the different types of

patches, the authors of [13] proposed the patching scheme of prepending a 0 bit

(byte) to the input message before feeding it to HMAC as their final patch. For our

analysis, we will refer to this patch as the patch P0. The patch P0 is defined as

P0(M) = 0||M

10

whereM is message of any length and resulting HMACP0-H(K,M) (also denoted as

HMAC- H(pad0
∗
(K), P0(M))) is defined as

HMACP0-H(K,M) = HMAC-H(K,P0(M)).

= HMAC-H(K, 0 ‖M)

This construction is defined in Fig. 2.3.

H(K ⊕ ipad)

H(K ⊕ opad)

t (n-bit)

h (n-bit)||

||

0||M

Figure 2.3: HMACP0-H(K,M) construction.

2.2 Dodis et al.'s work

In [8], the authors described two kinds of weak keys (i.e. ambiguous and colliding

keys) which when used with HMAC-H(K,M) can allow an attacker to mount attacks

on the scheme. The authors suggested that the only way to avoid such attacks is

not to use these weak keys. These pairs can be avoided by using keys of fixed

length |K| < d − 1. Using these weak keys authors in [8] showed differentiability

attacks on HMAC-H(K,M). So we will analyse our HMACSPK -H(K,M) for weak key

pairs. For better understanding we will first discuss the padding schemes.

2.2.1 Key padding

In HMAC scheme the key size |K| should be equal to block size d of underlying

hash function H. So if |K| < d then we have to pad the key with some bits to make

it equal to d. For this purpose key padding schemes are used. However if |K| = d

then no padding is done.

Pad0∗(x) padding scheme

or 0∗ padding, defined as pad0
∗
(x) = x||0v where v = d− |x|.

11

2.2.2 Ambiguous keys

are those key pairsK1 andK2 such thatK1 6= K2 but pad
0∗(K2) = pad0

∗
(K1)⊕ipad⊕opad.

As a result fK⊕ipad = fK′⊕opad and fK⊕opad = fK′⊕ipad. These are also known as related

keys.

2.2.3 Colliding keys

are those key pairs K1 and K2 such that K1 6= K2 but pad
0∗(K1) = pad0

∗
(K2) due to

which HMAC(K1,M) = HMAC(K2,M).

12

Chapter 3

Our Contribution

3.1 Motivation and Research Problem

We discussed in earlier sections that the HMAC is widely deployed in industry,

Hence any attack on HMAC can't be ignored. The Peyrin et al. [13] showed some

attacks which were demonstrated earlier with higher complexities in single key

scenario but they showed that these attacks can be done on a lower complexity

in related key model. They also provide patch for these attacks but no explana-

tion/proof is provided. Whereas Dodis et al. [8] showed that ambiguous pairs may

lead to indiffrentiability attacks. So, we decided to work on these problems and

try to fix them.

Research Aim:

1. Study and verify Peyrin et al.'s patch.

2. Provide efficient patch: If Peyrin et al.'s patch is not secure the only defense

to prevent these attacks will be to increase the internal state of implementa-

tion. This measure with increase the effort for adversary but it will also affect

the performance of HMAC. Secondly, the HMAC is widely deployed and it

is not easy to replace older implementation with new implementation (with

larger internal state) from everywhere. Hence we must find some efficient

and easy way to patch (so that we need not to change the whole implementa-

tion) this problem.

3. Prevent indifferentiability attacks on HMAC.

13

3.2 Insecurity of patch proposed by Peyrin et al.

Note that no proof of security or explanation of the patch is provided in [13]. We

analyse the construction HMACP0-HP0(K,M) by checking it against various modifi-

cations and assumptions. To analyse, we may modify underlying primitives but not

the fundamental HMAC construction. We emphasise that we allow the attacker to

tamper the output of oracle HMAC-H (or HMAC-H') before the next call to the same

or a different oracle. However, the attacker can't temper within the HMAC con-

struction (he can only tamper between two calls to the HMAC oracle). In Fig. 3.1

we have depicted the attack/modification area. By introducing changes at the place

marked as ``attack" in this figure, we analyse the patch P0.

Collision Finding Adversary

An adversary A(H, ε, t) is known as a collision finding adversary if it can find colli-

sions in the hash function H in time t with advantage ε. ε is defined as

ε = Pr[x, x′ ← A : H(x) = H(x′)& x 6= x′].

Preimage Finding Adversary

An adversary A(H, ε, t) is known as a preimage finding adversary if it can find preim-

age in hash function H in time t with advantage ε. ε is defined as

ε = Pr[x← A : h = H(x)].

Second Preimage Finding Adversary

An adversary A(H, ε, t) is known as a second preimage finding adversary if it can

find second preimage in hash function H in time t with advantage ε. ε is defined as

ε = Pr[x′ ← A : H(x) = H(x′)& x 6= x′].

3.3 Hash H is Collision, Preimage and Second Preimage

Resistant

The security of HMAC-H(K,M) is depicted in terms of unforgeability but depends

on the underlying hash function H. We analyze the security of HMACP0-H(K,M)

14

H(K ⊕ ipad)

H(K ⊕ opad)

t0

h0
||

||

0||M

H(K ′ ⊕ ipad)

H(K ′ ⊕ opad)

t′
0

h′

0
||

||

0||M

attack

attack

c

c′

Next Call to

Next Call to

Oracle HMAC-H(K,M)

Oracle HMAC-H(K′,M)

HMAC
P0

-H(K,M)

HMAC
P0

-H(K ′,M)

Figure 3.1: HMACP0-H(K,M) and HMACP0-H(K ′,M) behave like a black box, hence an
attacker can only modify the sequence between two consecutive calls to the oracles.

with the assumption that the underlying H is a ``good" hash function i.e. H is

collision resistant, preimage resistant and second preimage resistant.

Hash construction HP0

Let HP0 be a collision resistant (CR), preimage resistant (PR) and 2nd preimage

resistant (Second PR) hash function, which uses a CR, PR and Second PR hash

function H as its underlying function and prepends 0 to its output. Patch P0 is

defined as

P0(M) = 0||M

where M is a message of arbitrary length. HP0 is defined as

HP0(M) = P0(H(M)) = 0||H(M) = 0||h.

The construction HP0 is described in Fig. 3.2.

P0H

M

0||hh

Figure 3.2: Hash function HP0 which is collision, Preimage and 2nd Preimage resistant.
The block P0 takes an input h and outputs h prepended with 0.

15

HP0 is CR, PR and Second PR

We discussed earlier that the security of HMAC-H(K,M) relies on the underlying

hash function. We show that the construction HP0 satisfies the essential properties

of a good hash function, it is collision resistant (CR), preimage resistant (PR) and

second preimage resistance (Second PR).

Theorem 1. If there exists a collision finding adversary A(HP0, ε, t) then there also

exists a collision finding adversary BA(H, ε, t′).

Proof: Let us consider an efficient adversary A(HP0, ε, t) which can find collisions

for HP0 with more than negligible probability.

Algorithm 1 Collision finding adversary BA for H

INPUT: A hash function H

OUTPUT: x1,x2 where H(x1) = H(x2) but x1 6= x2

x1,x2 = A(HP0, ε, t)

return x1,x2

To find a colliding pair for H, we require an efficient collision finding adversary

A(HP0, ε, t) where time t = t′ + time consumed for calculating P0 and t′ is the time

consumed by adversary BA. But hash function H is collision resistant, so existence

of such an adversary BA is not possible.

⇒ HP0 is collision resistant.

Theorem 2. If there exists a preimage finding adversary A(HP0, ε, t) then there also

exists a preimage finding adversary BA(H, ε, t′).

Proof: Let there be an efficient adversary A(HP0, ε, t) which when provided with h,

can find x such that

h = HP0(x).

Algorithm 2 Preimage finding adversary BA for H

INPUT: A hash function H and h′ such that h′ ← {0, 1}n

OUTPUT: x where h′ = H(x)

h = P0(h′)

x = A(HP0, ε, t)(h)

return x

To find such an x, we require an efficient preimage finding adversary A(HP0, ε, t)

where time t = t′ + time consumed for calculating P0 and t′ is the time consumed

by adversary BA. But hash function H is preimage resistant, so existence of such

16

an adversary BA is not possible.

⇒ HP0 is preimage resistant.

Theorem 3. If there exists a second preimage finding adversary A(HP0, ε, t) then

there also exists a second preimage finding adversary BA(H, ε, t′).

Proof: Let us consider an efficient adversary A(HP0, ε, t) which when provided with

h and x1, can find x2 such that

h = HP0(x1) = HP0(x2).

Algorithm 3 Second Preimage adversary BA for H

INPUT: A hash function H, x1 and h′

OUTPUT: x2 where H(x1) = H(x2) and x1 6= x2

h = P0(h′)

x2 = A(HP0, ε, t)(h, x1)

return x2

To find such an x2 we require efficient second preimage finding adversaryA(HP0, ε, t)

where time t = t′ + time consumed for calculating P0 and t′ is the time consumed

by adversary BA. But hash function H is second preimage resistant, so existence

of such a BA is not possible.

⇒ HP0 is second preimage resistant.

3.4 HMACP0-HP0(K,M) is not secure

The attack described in [13] relies on the fact that given large numbers of queries

on oracles HMAC-H(K,M) and HMAC-H(K ′,M), a collision will occur at some in-

stance. After the collision, the same input is forwarded to identical stages in both

the cases, so this trend (collisions) will continue. Hence the walks A and B will en-

ter in the same cycle, enabling the attacker to mount various attacks. To prevent

these attacks, walks A and B should not enter in the same cycle. Fig. 3.3 illustrates

the walk generation using HMACP0-HP0(K,M) and HMACP0-HP0(K ′,M). To avoid

the attacker from getting a cycle, occurrence of the same consecutive outputs (ei-

ther intermediate or final) of HMACP0-HP0(K,M) and HMACP0-HP0(K ′,M) must be

prevented. By prepending an extra 0 bit (or byte) in every call to HMAC-H(K,M),

the authors of [13] tried to make the internal states different. So that even if the

outputs of HKout or HKin collide in HMAC
P0-HP0(K,M) and HMACP0-HP0(K ′,M), the

outputs of next stage will never collide. This is because inputs to the next stage

are different for both calls due to the prepended extra 0 (If at some point h0 and

17

t′1 collides then 0 is prepended to h0). So the values at b and c′ is not same hence

outputs t1 and h′1 also differ. If we manage to keep the inputs same in both cases

then collision will propagate, resulting in cycles. In Fig. 8 we can observe that

in this scenario if the collision takes place at any point, then the probability of a

collision taking place at the next step is 1.

HP0(K ⊕ ipad)

(K ⊕ opad)

t0

h0
|| h1

||

0||M
0 || a

(K ⊕ ipad)

(K ⊕ opad)

t1

||

||

(K ′ ⊕ ipad)

(K ′ ⊕ opad)

t′
0

h′

0
|| h′

1

||

0||M
0 || a′

(K ′ ⊕ ipad)

(K ′ ⊕ opad)

t′
1

||

||

drop(h0)

drop(h′

0
)

c

a

b

a′

c′

b′

HP0

HP0

HP0

HP0

HP0

HP0

HP0

Figure 3.3: Walk Generation using oracle HMACP0-HP0(K,M) and HMACP0-HP0(K ′,M).

walk A

walk B

ZA = ZB

w

w
′

1

1

1

1 1 1 1

1

1

1

1 11 1

Figure 3.4: Walk A and B entering into same cycle in synchronization i.e. ZA = ZB. After
entering the cycle the probability of obtaining collision at consecutive step is 1 on each
edge.

In Fig. 3.3, HMACP0-HP0(K,M) and HMACP0-HP0(K ′,M) are used as oracles, both

of which use HP0 as underlying hash function. The message M is prepended with

0 in both the cases. The output given by HP0 hash is prepended with 0. In the

same figure we can observe that due to this step, if a collision occurs at h0 and

t′0 (i.e. 0||h0 = 0||t′0) then it will not propagate to the next step. As all calls to HP0

provide 0 prepended to the output of the actual hash function H, due to which at

the beginning of next call of HMACP0-HP0(K,M) or HMACP0-HP0(K ′,M), there will

be two extra 0 bits (one from the hash function HP0 and another one prepended

according to the patching scheme P0). To tackle this, we have to deploy drop(x)

function block which will remove this extra zero. If this extra zero is not removed

then the length of b will become 1 bit longer than c′ and hence the hash value will

differ completely.

Due to the dropping of this extra 0 bit, the value at b and c′ becomes the same (i.e.

h0 = t′0). As a result of this, t1 and h′0 will also collide (i.e. t1 = h′0). This chain

will continue and hence cycles will be obtained by the attacker. So the patching

18

scheme proposed in [13] is completely broken when a hash function which is col-

lision resistant, preimage resistant and 2nd preimage resistant, but which is not a

random oracle.

3.5 HMACP0-H(K,M) is secure in the RandomOracleModel

The patching scheme proposed in [13] prepends a 0 bit (or byte) and thwarts syn-

chronized computation chain (i.e. cycle). Even if the values collide i.e. h0 = t′1, since

the underlying function H is a random oracle, the probability of having t1 = h′1 is

negligible. The prepended extra 0 increases the length of the message hence al-

tering the output significantly. As a first try, we would like to bring this probability

to some measurable bounds.

H(K ⊕ ipad)

H(K ⊕ opad)

t0

h0
|| H h1

||

0||M
0 || a

H(K ⊕ ipad)

(K ⊕ opad)

t1

||

||

H(K ′ ⊕ ipad)

H(K ′ ⊕ opad)

t′
0

h′

0
|| H h′

1

||

0||M
0 || a′

H(K ′ ⊕ ipad)

(K ′ ⊕ opad)

t′
1

||

||

modify(h0)

modify(h′

0
)

a

b

c

a′

b′

c′

Figure 3.5: Walk Generation using HMACP0 oracles.

walk A

walk B

ZA = ZB

w

w
′

≤1/2

≤1/2

≤1/2

≤1/2

≤1/2≤1/2≤1/2≤1/2

≤1/2

≤1/2 ≤1/2 ≤1/2≤1/2

≤1/2

Figure 3.6: Walk A and B entering into same cycle in synchronization i.e. ZA = ZB. After
entering the cycle the probability of obtaining collision at consecutive step is at most 1/2
on each edge.

We propose function modify(x) to do some modifications to x. Suppose that a col-

lision happens at some point in the path i.e. h0 = t′0, as shown in Fig. 9. After the

modify function is applied to h0, the probability of having a collision in each sub-

sequent step is at most 1/2. In figure 3.6, a cycle is shown with the probability of

having collision after each step, i.e., if a collision takes place at w then with proba-

bility ≤ 1/2, a collision will also occur at w′. As at least 2n/2 elements are needed in

a computational chain, the probability of getting a chain will be ≤ 2−2n/2
. This prob-

19

ability is very low and infeasible in real world scenario i.e. for HMAC-SHA1(K,M)

it is 2−280. Hence HMAC-H(K,M) is secure when a collision resistant, preimage re-

sistant and second preimage resistant is used which behaves like a random oracle.

3.6 Insecurity of any public and reversible patch

In chapter 3.2 we observed that the attack is possible due to drop(x) function

which is the inverse of the patch (Patching scheme prepends 0 to message whereas

drop(x) drops the prepended 0). So the attack is only possible when attacker knows

the patching scheme and can find its inverse. In this chapter we will demonstrate

how HMACP -HP (K,M) scheme is insecure for any patch when patch is public and

reversible.

Hash construction HP

To demonstrate attacks on generic design, hash function HP is defined such that

HP is based on a good hash function H. Let HP be a collision, preimage and second

preimage resistant function. HP is a random oracle or not depends on the function

P which applies on the output of function H. Let P be a public and reversible

function. The hash function HP is defined as

HP (M) = P (H(M)) = P (h)

and construction of HP is shown in Fig. 3.7

PH

M

P (h)
h

Figure 3.7: The HP construction.

3.7 Hash HP is CR, PR, Second PR

As we discussed in chapter 3.2 the security of HMAC-H(K,M) is depicted in terms

of unforgeability but depends on the underlying hash functionH. We will check the

HMACP0-H(K,M) with the assumption that underlying H is a good hash function.

20

Theorem 4. If there exists a collision finding adversary A(HP , ε, t) then there also

exists a collision finding adversary BA(H, ε, t′).

Proof: Let us consider an efficient adversary A(HP , ε, t) which can find collisions

for HP with more than negligible probability.

Algorithm 4 Collision finding adversary BA for H

INPUT: A hash function H

OUTPUT: x1,x2 where H(x1) = H(x2) but x1 6= x2

x1,x2 = A(HP , ε, t)

return x1,x2

To find a colliding pair for H, we require an efficient collision finding adversary

A(HP , ε, t) where time t = t′ + time consumed for calculating P and t′ is the time

consumed by adversary BA. But hash function H is collision resistant, so existence

of such an adversary BA is not possible.

⇒ HP is collision resistant.

Theorem 5. If there exists a preimage finding adversary A(HP , ε, t) then there also

exists a preimage finding adversary BA(H, ε, t′).

Proof: Let there be an efficient adversary A(HP , ε, t) which when provided with h,

can find x such that

h = HP (x).

Algorithm 5 Preimage finding adversary BA for H

INPUT: A hash function H and h′ such that h′ ← {0, 1}n

OUTPUT: x where h′ = H(x)

h = P (h′)

x = A(HP , ε, t)(h)

return x

To find such an x, we require an efficient preimage finding adversary A(HP , ε, t)

where time t = t′ + time consumed for calculating P and t′ is the time consumed

by adversary BA. But hash function H is preimage resistant, so existence of such

an adversary BA is not possible.

⇒ HP is preimage resistant.

Theorem 6. If there exists a second preimage finding adversary A(HP , ε, t) then

there also exists a second preimage finding adversary BA(H, ε, t′).

Proof: Let us consider an efficient adversary A(HP , ε, t) which when provided with

21

h and x1, can find x2 such that

h = HP (x1) = HP (x2).

Algorithm 6 Second Preimage adversary BA for H

INPUT: A hash function H, x1 and h′

OUTPUT: x2 where H(x1) = H(x2) and x1 6= x2

h = P (h′)

x2 = A(HP , ε, t)(h, x1)

return x2

To find such an x2 we require efficient second preimage finding adversary A(HP , ε, t)

where time t = t′ + time consumed for calculating P and t′ is the time consumed

by adversary BA. But hash function H is second preimage resistant, so existence

of such a BA is not possible.

⇒ HP is second preimage resistant.

3.8 HMACP -HP (K,M) is not secure

To analyse the security of HMACP -HP (K,M), we consider two oracles HMACP -HP (K,M)

and HMACP -HP (K ′,M) depicted in Fig. 3.8. From previous chapters we know that

patch part changes the input before feeding it to HMAC-H(K,M) hence thwarting

the attack. Even by using custom hash function HP which outputs P (h) we are

not able to get a computational chain. Suppose collision happened at h0 = t′0, still

t1 6= h′0. This is due to the fact that b differs from c′, because in the pathc P has

taken place in the case of oracle HMACP -HP (K,M). Therefore to carry the attack

we have to get rid of this extra padding (applied to h0 in case of HMAC
P -HP (K,M)).

As we know P is public and reversible so we can easily construct function P−1 which

is inverse of P . In Fig. 3.8, the attacker uses P−1 to remove extra patching of h0

such that h0 = P (a) where a = P−1(h0). So inputs b and c′ become same and hence

adversary can get computational chains. Hence HMACP -HP (K,M) construction is

not safe if the patch P is public and reversible.

22

(K ⊕ ipad)

(K ⊕ opad)

t0

h0

|| h1

||

M

(K ⊕ ipad)

(K ⊕ opad)

t1

||

||

P
−1

P

H
P

(K ′
⊕ ipad)

(K ′
⊕ opad)

t′
0

h′

0
|| h′

1

||

M

(K ′
⊕ ipad)

(K ′
⊕ opad)

t′
1

||

||

P

a

a′

b

b′

c

c′
H

P

H
P

H
P

H
P

H
P

H
P

H
P

P

P

P
−1

Figure 3.8: Path generation using HMACP -HP oracles.

23

Chapter 4

Our two new patch proposals

In previous chapters we discussed the patching scheme proposed by [13] and

showed that it is not secure against attack described by them. We observed that if

one wants to patch the HMAC-H(K,M) scheme then patching scheme should sat-

isfy some minimum conditions. Such a patching scheme should be either secret or

one way. We will discuss these and try to give our final proposal.

4.1 Secret Patch

A secret patch is one which is unknown to the attacker, i.e, either the attacker is

unaware of the patching scheme or unaware of the patch applied despite knowing

the patching scheme. This gives a rough idea that if the patch scheme is kept secret

then one can use constant patch such as patch(M) = M⊕J where J is a constant and

is only known to the designer. In this case if the information about J is leaked, the

whole scheme will be compromised. So instead of using a secret constant, some

other secret should be used which must keep changing with its use, i.e. key K.

Further, instead of applying xor to whole message, we can just xor first block of

message M of length d.

4.1.1 Secret Patch SP(K,M)

Secret patching scheme SP(K,M) is defined as

SP (K,M) = M [1]⊕K||M [2]M [3] . . .M [s]

wheremessageM is divided into s blocks of block length d, sayM [1]M [2]M [2] . . .M [s].

If |M | < d thenM [1] is padded with 0's such that |M [1]00 . . . 0| = d, otherwise it is used

as it is. K is a secret key of length b-bits. If b < d then K is padded with 0's such

24

that |K200 . . . 0| = d, if b > d then H(K) is used as key where H is a hash function

with output length d. We will consider K as the padded secret key from now on.

In the case of a secret patch we don't bother about the randomness of underlying

hash function H, i.e., we need H to be collision resistant, preimage and second

preimage resistant but we don't care about its randomness.

Theorem 7. The HMAC scheme will be secure with respect to related key attacks

using cycle detection described in [13] if a secret patch is used. Secret patch refer

to patching scheme which is applied to message M before passing it into HMAC

and the attacker can't predict patch with more than negligible probability.

Proof: Secret patch is

SP (K,M) = M [1]⊕K||M [2]M [3] . . .M [s].

HMACSPK -H(K,M) is HMAC-H(K,M) which is using secret patch SP (K,M) as the

patching scheme, any collision resistant, preimage resistant and second preim-

age resistant hash function H (not necessarily a random oracle). Here K = K00 . . .

whereas |K1| = d andM is themessage. To analyse the security of HMACSPK -H(K,M),

in Fig. 4.1, we have path generation by using oracles HMACSPK -H(K,M) andHMACSPK′

-H(K ′,M).

As discussed earlier, HMACSPK -H(K,M) will behave like a black box. So an at-

tacker can only mount attack between two calls to oracle HMACSPK -H(K,M) (or

HMACSPK′ -H(K ′,M)). If h0 and t′0 collide then for a successful attack b and c′ should

also collide, so that the collision chain can propagate. In case of HMACSPK -H(K,M),

h0 will be applied upon by patch SP(K,M). Therefore, the only way to make b and h0

same is to apply SP−1(K,M) on h0 so that when SP(K,M) is applied on it, it remains

h0 i.e. h0 = SP(K, a) = K ⊕ a[1]||a[2]a[3].....a[s].

(K ⊕ ipad)

(K ⊕ opad)

t0

h0

|| h1

||

M

(K ⊕ ipad)

(K ⊕ opad)

t1

||

||

(K ′
⊕ ipad)

(K ′
⊕ opad)

t′
0

h′

0
|| h′

1

||

M

(K ′
⊕ ipad)

(K ′
⊕ opad)

t′
1

||

||

a

a′

b

b′

c

c′
H

H

H

H

H

H

H

H

SP

modify(h0)

modify(h′

0
)

SP

SP

SP

K K ′

K K ′

Figure 4.1: Path generation using HMACSP oracles.

Hence the attacker needs the secret key K to carve such a out of h0. The attacker

attempt to guess the key and guesses K. The probability of guessing the right key

25

is

Prob [K = h0 ⊕ a] ≤ max(2−b, 2−d) ≤ Negligible

where the total effort required is min(2b, 2d) + 2n/2. Note that 2b (or 2d) is the effort

of getting the key K and 2n/2 is number of consecutive rounds needed to construct

a cycle. As

Total Complexity = min(2b, 2d) + 2n/2

which is very high, so the probability of getting a synchronized cycle in this case

is negligible.

We emphasize that instead of using same key K for secret patch as well as for

HMAC if two different keys K1,K2 are used i.e. HMAC
SPK2 -H(K1,M) and secret

patch SPK2, Then the construction prevents related key attacks due to cycle detec-

tion techniques but it allows forgery attack on HMAC(K,M). As shown in Fig. 4.2

if we use two different keys K1,K2 when calculating secure tag of message M

then tag can be forged by using keys K1,K
′
2 on a crafted message M ′ such that

K2 ⊕M = K ′
2 ⊕M ′. When such message, key pair is fed to the construction it will

produce the same secure tag h in both the cases.

(K1 ⊕ ipad)

(K1 ⊕ opad)

t

h||

||

M

H

H

K2 SP

(K1 ⊕ ipad)

(K1 ⊕ opad)

t

h||

||

M ′

H

H

K ′

2 SP

Figure 4.2: Oracles HMACSPK2 -H(K1,M) and HMAC
SPK′

2 -H(K1,M
′)

Therefore, by using this attack, an adversary can forge secure tags. If single key

K is used and the attacker tries to forge a secure tag on HMACSPK -H(K,M). It is

impossible to have two messages M,M ′ such that K ⊕M = K ⊕M ′. If the attacker

chooses different K for two separate HMACSPK -H(K,M) calls then the inner and

the outer keys will be different in both the cases. This will prevent forgery attacks

on the scheme. So we can not use two different keys for this purpose.

⇒HMAC scheme is secure against related key attacks described in [13] if the patch
is secret.

We propose HMACSPK -H(K,M) as secret patch, shown in Fig. 4.3 and defined as

26

HMACSPK −H(K,M) = HMAC(K,SP (K,M))

= HKout(HKin(SP (K,M)))

= HKout(HKin(K ⊕M [1]||M [2]M [3] . . .M [s])))

(K ⊕ ipad)

(K ⊕ opad)

t

h||

||

M

H

H

K SP

Figure 4.3: The HMACSPK -H(K,M) construction

Hence HMACSPK -H(K,M) (also denoted as HMAC- H(pad0
∗
(K), SP (K,M))) is secure

against cycle detection based related key attacks shown in [13].

4.2 One way Patch Ow(M)

A good one way function is one in which computation in one direction is easy and

fast whereas it is very hard (or may be impossible) to go in the other direction. This

will be applied to messageM before passing it into HMAC-H(K,M) scheme, though

it is public but no adversary can efficiently invert its output to obtain the correct

input. The one way property of the function is not enough because if the attacker

finds collision on this function, he can forge a secure tag. So we have to use a good

collision, preimage and 2nd preimage resistant function for the patching scheme.

4.2.1 Collision Resistant One Way Patch CrOw(M)

Collision Resistant One way patching scheme CrOw(M) is defined as

CrOw(M) = f ′(M [1])||M [2]M [3] . . .M [s]

here message M is divided into s blocks of block length d say M [1]M [2]M [2] . . .M [s]

and f ′ is a oneway functionwith output length d. The constructionHMACCrOw-H(K,M)

is shown in Figure 4.4

HMACCrOw-H(K,M) or HMAC-H(pad0
∗
(K), CrOw(M))) is HMAC-H(K,M) construc-

tion which is using one way patch CrOw(K,M) as the patching scheme, and any col-

lision resistant, preimage and second preimage resistant hash function H (not nec-

essarily a random oracle) internally. To analyse the security of HMACCrOw-H(K,M),

27

(K ⊕ ipad)

(K ⊕ opad)

t

h||

||

M

H

H

CrOw

Figure 4.4: The HMACCrOw-H(K,M) construction

in Fig. 4.5 we show the path generation by using oracles HMACCrOw-H(K,M) and

HMACCrOw-H(K ′,M).

As we discussed earlier, HMACCrOw-H(K,M) will behave like a black box. The

attacker will be left with only one choice for mounting the attack, i.e., between

two calls to oracle HMACCrOw-H(K,M) (or HMACCrOw-H(K ′,M)). If h0 and t′0 col-

lides then for a successful attack b and c′ should also collide, so that the collision

chain can propagate. In case of HMACCrOw-H(K,M), the value h0 will be patched

by patch CrOw(M). Therefore, the only way to make b and h0 same is to apply

CrOw−1(M) on h0 so that when CrOw is applied on it, it remains h0 i.e. h0 = CrOw(a)

= f ′(a[1])||a[2]a[3].....a[s].

(K ⊕ ipad)

(K ⊕ opad)

t0

h0

|| h1

||

M

(K ⊕ ipad)

(K ⊕ opad)

t1

||

||

(K ′
⊕ ipad)

(K ′
⊕ opad)

t′
0

h′

0
|| h′

1

||

M

(K ′
⊕ ipad)

(K ′
⊕ opad)

t′
1

||

||

a

a′

b

b′

c

c′
H

H

H

H

H

H

H

H

CrOw

modify(h0)

modify(h′

0
)

CrOwCrOw

CrOw

Figure 4.5: Path generation using HMACCrOw oracles.

walk A

walk B

ZA = ZB

w

w
′

2
avg

2
avg

2
avg

2
avg

2
avg

2
avg

2
avg

2
avg

2
avg

2
avg

2
avg

2
avg2

avg
2
avg

Figure 4.6: Walk A and B entering into same cycle in synchronization i.e. ZA = ZB. After
entering the cycle the probability of obtaining collision at consecutive step is at most 2avg

on each edge.

As the patch is a one way function f ′ hence no attacker can design an inverse

28

function f ′−1 for it. To carry out the attack we need to find preimage of the given

f ′(M) for each step. Let the average complexity to do this be 2avg. Since H is a d

bit output hash function and the attacker has to do this for all the steps, a total of

2n/2 steps are needed to get synchronized cycle as shown in Fig. 4.6. As a result,

the total complexity of this attack will be around

Total Complexity ≡ 2avg ∗ 2n/2 = 2avg+n/2.

Therefore, if a good collision resistant one way function f ′ is used then the com-

plexity is very high. Hence HMACCrOw-H(K,M) is very difficult to attack by using

cycle detection based attacks discussed in [13].

4.3 Comparison

We have proposed two patches for HMAC. In order to provide our final patch We

need to find the best of the two using comparative analysis techniques. Proposed

secret patch SP is given by

SP (K,M) = M [1]⊕K||M [2]M [3] . . .M [s].

Proposed public one way patch CrOw is

CrOw(M) = f ′(M [1])||M [2]M [3] . . .M [s].

Both of the patches are individually capable of securing the scheme. The security

of collision resistant one way patch depends on choice of function f ′(x) which can

be any good function, we can't provide concrete complexity bounds. Also patch

SP(K,M) uses XOR operation on first block of message M [1] and key K whereas

the patch CrOw(M) calculates function f ′ on first block of message M [1], so from

efficiency point of view the patch SP(K,M) is better because the XOR operation is

lightweight as compared to any good one way function f ′ where many XOR/other

operations may be required to be implemented to achieve randomness and preim-

age resistance.

⇒ Secret Patch SP(K,M) will be the more efficient one in preventing the attacks

described in [13] on HMAC-H(K,M).

29

Chapter 5

Preventing weak keys based

attack with our patches

In [8], the authors described two kinds of weak key pairs which when used with

HMAC-H(K,M) can allow an attacker to mount attacks on the scheme. In order

to prevent these pairs we propose a new padding for HMAC. This padding will

prevent the colliding keys from occurring. The padding is defined below.

Pad10∗(x) padding scheme

or 10∗ padding, defined as pad10
∗
(x) = x||10v−1 where v = d− |x|.

5.1 Existence of colliding pairs

Table 5.1 shows existence of colliding key pairs in various configurations of HMAC-

H(K,M). These pairs exists due to the fact that padding scheme pad0
∗
pads two keys

in such a manner that they become same. But when pad10
∗
is used, due to the bit 1

in the padding scheme, no two keys of different length can become same (provided

that for both |K| < d). It is also clear from the table that in case of padding pad0
∗

colliding pairs exists in every case except when both keys are of length |K| = d.

However in the case of padding pad10
∗
, colliding pairs simply don't exist in any

case.

5.1.1 Existence of ambiguous pairs

Table 5.1 shows existence of ambiguous key pair in various configurations of HMAC-

H(K,M). It is clear from the table that in case of padding pad0
∗
, key size bound to

30

avoid ambiguous pairs is |K| < d − 1. However in case of padding pad10
∗
to avoid

ambiguous pairs key size should be |K| < d− 2.

Lemma 1. In case of padding pad10
∗
, there exists no weak key pair only if key of

size |K| < d− 2 is used.

Explanation: In standard HMAC-H(K,M) ambiguous pairs only exists when |K| =
d− 1 or d. Because for keys of size |K| = d− 1 and d, due to pad0

∗
of HMAC-H(K,M)

last two bits of the key K will always be 00. Last two bits of constant ipad and

opad are 10 and 00 respectively (ipad = 0x363636 . . . 36 having last two bits as 10 and

opad = 0x5C5C5C . . . 5C having last two bits as 00). Hence, the last two bits of inner

key Kin = K ⊕ ipad are 10 and for outer key Kout = K ⊕ opad are 00. If a key of length

|K| = d − 1 or d is used, then the last bits of inner and outer keys may come out to

be the same. Due to this difference, keys with length |K| < d− 1 are safe to use in

HMAC-H(K,M).

Similarly last three bits of constant ipad and opad are 110 and 100 respectively. When

a key of size |K| < d − 2 is used then the last three bits of padded key will be

100. Hence last three bits of inner key Kin = K ⊕ ipad are 010 and for outer key

Kout = K ⊕ opad are 000. Due to this difference, the problem of ambiguous pairs

doesn't arise. On the other hand, if a key of length |K| ≥ d − 2 is used, then the

last bits of inner and outer keys may come out to be the same. That is why bound

|K| < d− 2 must be followed to avoid ambiguous pairs.

5.2 Security against attacks

Table 5.2 shows the feasibility of attacks on various configurations of HMAC-H(K,M).

We have discussed the following two attacks in the table.

Related key attacks based on ambiguous pairs

Related key attacks comprises of distinguishing-R, distinguishing-H, internal state

recovery and forgery attacks on HMAC-H(K,M) scheme. We have already dis-

cussed these in Sec. 2.2.

5.2.1 Indifferentiability attacks based on colliding pairs

As described in [8], indifferentiability attack on HMAC-H(K,M) is said to be per-

formed successfully if the attacker can distinguish between pair of oracles consist-

ing of HMAC-H(K,M)with underlying hashH and a random oracle with a simulator

31

C
o
n
s
tr
u
c
ti
o
n

K
e
y
S
iz
e

C
o
ll
id
in
g
A
m
b
ig
u
o
u
s

C
o
n
s
tr
u
c
ti
o
n

K
e
y
S
iz
e

C
o
ll
id
in
g
A
m
b
ig
u
o
u
s

|K
|

k
e
y
p
a
ir
s
k
e
y
p
a
ir
s

|K
|

k
e
y
p
a
ir
s
k
e
y
p
a
ir
s

H
M
A
C
-H

(p
a
d
0
∗
(K

),
M

)
0
<
|K
|<

d
−
1

O
X

H
M
A
C
-H

(p
a
d
1
0
∗
(K

),
M

)
0
<
|K
|<

d
−
1

X
O

[2
]

d
−

1
≤
|K
|<

d
O

O
[o
u
r
c
o
n
tr
ib
u
ti
o
n
]

d
−
1
≤
|K
|<

d
X

O

0
<
|K
|<

d
−
2

O
X

0
<
|K
|<

d
−
2

X
X

d
−

2
≤
|K
|<

d
O

O
d
−
2
≤
|K
|<

d
X

O

|K
|=

d
X

O
|K
|=

d
X

O

H
M
A
C
-H

(p
a
d
0
∗
(K

),
P
0
(M

))
0
<
|K
|<

d
−
1

O
X

H
M
A
C
-H

(p
a
d
1
0
∗
(K

),
P
0(
M

))
0
<
|K
|<

d
−
1

X
O

[1
3
]

d
−

1
≤
|K
|<

d
O

O
[o
u
r
c
o
n
tr
ib
u
ti
o
n
]

d
−
1
≤
|K
|<

d
X

O

0
<
|K
|<

d
−
2

O
X

0
<
|K
|<

d
−
2

X
X

d
−

2
≤
|K
|<

d
O

O
d
−
2
≤
|K
|<

d
X

O

|K
|=

d
X

O
|K
|=

d
X

O

H
M
A
C
-
H
(p
a
d
0
∗
(K

),
S
P
(K

,M
))

0
<
|K
|<

d
−
1

O
X

H
M
A
C
-
H
(p
a
d
1
0
∗
(K

),
S
P
(K

,M
))

0
<
|K
|<

d
−
1

X
O

[o
u
r
c
o
n
tr
ib
u
ti
o
n
]

d
−

1
≤
|K
|<

d
O

O
[o
u
r
c
o
n
tr
ib
u
ti
o
n
]

d
−
1
≤
|K
|<

d
X

O

0
<
|K
|<

d
−
2

O
X

0
<
|K
|<

d
−
2

X
X

d
−

2
≤
|K
|<

d
O

O
d
−
2
≤
|K
|<

d
X

O

|K
|=

d
X

O
|K
|=

d
X

O

H
M
A
C
-
H
(p
a
d
0
∗
(K

),
C
rO

w
(M

))
0
<
|K
|<

d
−
1

O
X

H
M
A
C
-
H
(p
a
d
1
0
∗
(K

),
C
rO

w
(M

))
0
<
|K
|<

d
−
1

X
O

[o
u
r
c
o
n
tr
ib
u
ti
o
n
]

d
−

1
≤
|K
|<

d
O

O
[o
u
r
c
o
n
tr
ib
u
ti
o
n
]

d
−
1
≤
|K
|<

d
X

O

0
<
|K
|<

d
−
2

O
X

0
<
|K
|<

d
−
2

X
X

d
−

2
≤
|K
|<

d
O

O
d
−
2
≤
|K
|<

d
X

O

|K
|=

d
X

O
|K
|=

d
X

O

T
a
b
le
5
.1
:
C
o
m
p
a
ra
ti
v
e
s
u
m
m
a
ry
o
f
e
x
is
te
n
c
e
o
r
n
o
n
-e
x
is
te
n
c
e
o
f
c
o
ll
id
in
g
k
e
y
s
a
n
d
a
m
b
ig
u
o
u
s
k
e
y
s
w
h
e
n
H
M
A
C
is
u
s
e
d
w
it
h
o
u
r

p
a
tc
h
e
s
i.
e
.

S
P
(K

,M
)
a
n
d

C
rO

w
(M

),
a
n
d
p
a
d
d
in
g
s
c
h
e
m
e
s
i.
e
.

p
a
d
0
∗
a
n
d

p
a
d
1
0
∗
.
|K
|
is
le
n
g
th
o
f
th
e
k
e
y
K
,
d
is
th
e
b
lo
c
k
s
iz
e
o
f

H
.
H
M
A
C
-H

(p
a
d
x
(K

),
M

)
is
H
M
A
C
-H

(K
,M

)
w
it
h
p
a
d
x
(e
it
h
e
r
p
a
d
0
∗
o
r
p
a
d
1
0
∗
).
S
im
il
a
rl
y
H
M
A
C
-H

(p
a
d
x
(K

),
P
0(
M

))
is
fo
r
H
M
A
C
-H

(K
,M

)
p
a
tc
h
e
d
w
it
h
p
a
tc
h
P
0
a
n
d
p
a
d
d
in
g
s
c
h
e
m
e
p
a
d
x
,
H
M
A
C
-
H
(p
a
d
x
(K

),
S
P
(K

,M
))
is
fo
r
H
M
A
C
-H

(K
,M

)
p
a
tc
h
e
d
w
it
h
p
a
tc
h
S
P
(K

,M
)
a
n
d

p
a
d
d
in
g
s
c
h
e
m
e
p
a
d
x
a
n
d
H
M
A
C
-H

(p
a
d
x
(K

),
C
rO

w
(M

))
is
fo
r
H
M
A
C
-H

(K
,M

)
p
a
tc
h
e
d
w
it
h
p
a
tc
h
C
rO

w
(M

)
a
n
d
p
a
d
d
in
g
s
c
h
e
m
e
p
a
d
x
.

E
a
c
h
O
e
n
tr
y
re
p
re
s
e
n
t
th
e
e
x
is
te
n
c
e
o
f
re
s
p
e
c
ti
v
e
w
e
a
k
k
e
y
w
h
e
re
a
s
X
e
n
tr
y
re
p
re
s
e
n
t
th
e
n
o
n
-e
x
is
te
n
c
e
o
f
re
s
p
e
c
ti
v
e
re
la
te
d
k
e
y
s

fo
r
g
iv
e
n
ra
n
g
e
o
f
k
e
y
le
n
g
th
|K
|.

32

C
o
n
s
tr
u
c
ti
o
n

K
e
y
S
iz
e

C
y
c
le
D
e
te
c
ti
o
n
a
tt
a
c
k

C
o
n
s
tr
u
c
ti
o
n

K
e
y
S
iz
e

C
y
c
le
D
e
te
c
ti
o
n
a
tt
a
c
k

|K
|

b
a
s
e
d
o
n

|K
|

b
a
s
e
d
o
n

a
m
b
ig
u
o
u
s
p
a
ir
s

a
m
b
ig
u
o
u
s
p
a
ir
s

H
M
A
C
-H

(p
a
d
0
∗
(K

),
M

)
0
<
|K
|<

d
−
1

X
H
M
A
C
-H

(p
a
d
1
0
∗
(K

),
M

)
0
<
|K
|<

d
−
1

O

[2
]

d
−

1
≤
|K
|<

d
O

[o
u
r
c
o
n
tr
ib
u
ti
o
n
]

d
−
1
≤
|K
|<

d
O

0
<
|K
|<

d
−
2

X
0
<
|K
|<

d
−
2

X

d
−

2
≤
|K
|<

d
O

d
−
2
≤
|K
|<

d
O

|K
|=

d
O

|K
|=

d
O

H
M
A
C
-H

(p
a
d
0
∗
(K

),
P
0
(M

))
0
<
|K
|<

d
−
1

X
H
M
A
C
-H

(p
a
d
1
0
∗
(K

),
P
0(
M

))
0
<
|K
|<

d
−
1

O

[1
3
]

d
−

1
≤
|K
|<

d
O

[o
u
r
c
o
n
tr
ib
u
ti
o
n
]

d
−
1
≤
|K
|<

d
O

0
<
|K
|<

d
−
2

X
0
<
|K
|<

d
−
2

X

d
−

2
≤
|K
|<

d
O

d
−
2
≤
|K
|<

d
O

|K
|=

d
O

|K
|=

d
O

H
M
A
C
-
H
(p
a
d
0
∗
(K

),
S
P
(K

,M
))

0
<
|K
|<

d
−
1

X
H
M
A
C
-
H
(p
a
d
1
0
∗
(K

),
S
P
(K

,M
))

0
<
|K
|<

d
−
1

X

[o
u
r
c
o
n
tr
ib
u
ti
o
n
]

d
−

1
≤
|K
|<

d
X

[o
u
r
c
o
n
tr
ib
u
ti
o
n
]

d
−
1
≤
|K
|<

d
X

0
<
|K
|<

d
−
2

X
0
<
|K
|<

d
−
2

X

d
−

2
≤
|K
|<

d
X

d
−
2
≤
|K
|<

d
X

|K
|=

d
X

|K
|=

d
X

H
M
A
C
-
H
(p
a
d
0
∗
(K

),
C
rO

w
(M

))
0
<
|K
|<

d
−
1

X
H
M
A
C
-
H
(p
a
d
1
0
∗
(K

),
C
rO

w
(M

))
0
<
|K
|<

d
−
1

X

[o
u
r
c
o
n
tr
ib
u
ti
o
n
]

d
−

1
≤
|K
|<

d
X

[o
u
r
c
o
n
tr
ib
u
ti
o
n
]

d
−
1
≤
|K
|<

d
X

0
<
|K
|<

d
−
2

X
0
<
|K
|<

d
−
2

X

d
−

2
≤
|K
|<

d
X

d
−
2
≤
|K
|<

d
X

|K
|=

d
X

|K
|=

d
X

T
a
b
le
5
.2
:
S
u
m
m
a
ry
o
f
fe
a
s
ib
il
it
y
o
f
c
y
c
le
d
e
te
c
ti
o
n
b
a
s
e
d
a
tt
a
c
k
s
b
a
s
e
d
o
n
a
m
b
ig
u
o
u
s
k
e
y
s
w
h
e
n
H
M
A
C
is
u
s
e
d
w
it
h
o
u
r
p
a
tc
h
e
s

i.
e
.

S
P
(K

,M
)
a
n
d

C
rO

w
(M

),
a
n
d
p
a
d
d
in
g
s
c
h
e
m
e
s
i.
e
.

p
a
d
0
∗
a
n
d

p
a
d
1
0
∗
.
|K
|
is
le
n
g
th
o
f
th
e
k
e
y

K
,
d
is
th
e
b
lo
c
k
s
iz
e
o
f
H
.

H
M
A
C
-H

(p
a
d
x
(K

),
M

)
is
H
M
A
C
-H

(K
,M

)
w
it
h

p
a
d
x
(e
it
h
e
r
p
a
d
0
∗
o
r
p
a
d
1
0
∗
).
S
im
il
a
rl
y
H
M
A
C
-H

(p
a
d
x
(K

),
P
0(
M

))
is
fo
r
H
M
A
C
-H

(K
,M

)
p
a
tc
h
e
d
w
it
h
p
a
tc
h

P
0
a
n
d
p
a
d
d
in
g
s
c
h
e
m
e

p
a
d
x
,
H
M
A
C
-
H
(p
a
d
x
(K

),
S
P
(K

,M
))
is
fo
r
H
M
A
C
-H

(K
,M

)
p
a
tc
h
e
d
w
it
h
p
a
tc
h

S
P
(K

,M
)

a
n
d
p
a
d
d
in
g
s
c
h
e
m
e
p
a
d
x
a
n
d
H
M
A
C
-H

(p
a
d
x
(K

),
C
rO

w
(M

))
is
fo
r
H
M
A
C
-H

(K
,M

)
p
a
tc
h
e
d
w
it
h
p
a
tc
h

C
rO

w
(M

)
a
n
d
p
a
d
d
in
g
s
c
h
e
m
e

p
a
d
x
.
E
a
c
h
O
e
n
tr
y
re
p
re
s
e
n
t
th
a
t
re
s
p
e
c
ti
v
e
c
o
n
s
tr
u
c
ti
o
n
is
n
o
t
s
e
c
u
re
a
g
a
in
s
t
th
a
t
a
tt
a
c
k
w
h
e
re
a
s
X
e
n
tr
y
re
p
re
s
e
n
t
th
a
t
re
s
p
e
c
ti
v
e

s
c
h
e
m
e
is
s
e
c
u
re
a
g
a
in
s
t
th
a
t
a
tt
a
c
k
.

33

based on the random oracle. In [11], the authors show that if a component S is in-

differentiable from T , then the security of any cryptosystem C(T) based on T is not

affected when T is replaced by S.

For HMAC-H(pad0∗(K),M) collision pair based attacks is not possible for |K| = d

whereas for all other possible keys it is feasible. Further, ambiguous pair based

attacks will only be prevented when |K| < d − 1. On the other hand, when used

with pad10
∗
(K), collision pair based attacks are not possible for any case and am-

biguous pair based attacks will work for all keys of size except |K| < d − 2. Re-

sults are similar for HMAC-H(padx(K), P0(M)). For HMAC- H(padx(K), SP (K,M))

and HMAC-H(padx(K), CrOw(M)) when pad10
∗
(K) is used, colliding pair based at-

tack is feasible for all keys of size except |K| = d. On the other hand, when

pad10
∗
(K) is used, colliding pair based attacks are not feasible for any key size.

But both constructions are safe from ambiguous key pair based attacks. There-

fore to conclude, when the 0 padding scheme, i.e. pad0
∗
is used with construc-

tions then indifferentiability attacks always exist. But when 10 padding scheme,

i.e. pad10
∗
is used with constructions then schemes HMAC-H(pad0

∗
(K), SP (K,M)

and HMAC-H(pad0
∗
(K), CrOw(M)) become secure against both the attacks, i.e. in-

differentiability attacks using colliding pairs and cycle detection attacks based on

related keys.

34

Chapter 6

Conclusions and Future work

In this work, we have shown that HMAC-H(K,M) patchedwith the patching scheme

proposed by Peyrin et al. in [13] fails when a collision, preimage and 2nd preimage

resistant but not a random oracle function is used as the underlying hash function.

We provided the explanation of failure for their patching scheme and showed that

the use of secret or collision resistant one way patching scheme (i.e. SP(K,M) and

CrOw(M)) can secure HMAC-H(K,M). We proposed that HMAC patched with any

one of our two patches with pad10 or 10 . . . 0 padding, is resistant to cycle detection

based generic related key attacks due to ambiguous keys discussed by Peyrin et

al. [13] and indifferentiability attacks based on colliding keys discussed by Dodis

et al. [8].

The main advantages of our patches are:

• These are very efficient in comparison to increasing the internal state of hash

function used in HMAC.

• These can be easily applied as a wrapper on present implementations.

The attacks are very specific, hence we won't be able to provide security proofs

for our patches. But, we have provided explanations for the same. We will try to

improve our patches and also explore new designs in future.

35

Bibliography

[1] Request For Comments: 3174, US Secure Hash Algorithm 1 (SHA1), 2001.

IETF Working group.

[2] Bellare, M. New Proofs for NMAC and HMAC: Security without Collision-

Resistance. In [15] (2006), C. Dwork, Ed., vol. 4117 of Lecture Notes in Com-

puter Science, Springer, pp. 602--619.

[3] Bellare, M., Canetti, R., and Krawczyk, H. Keying Hash Functions forMessage

Authentication. In CRYPTO (1996), N. Koblitz, Ed., vol. 1109 of Lecture Notes

in Computer Science, Springer, pp. 1--15.

[4] Bellare, M., and Kohno, T. Hash function balance and its impact on birthday

attacks. In EUROCRYPT (2004), pp. 401--418.

[5] Brassard, G., Ed. Advances in Cryptology - CRYPTO '89, 9th Annual Interna-

tional Cryptology Conference, Santa Barbara, California, USA, August 20-24,

1989, Proceedings (1990), vol. 435 of Lecture Notes in Computer Science,

Springer.

[6] Coron, J.-S., Dodis, Y., Malinaud, C., and Puniya, P. Merkle-damgård revisited:

How to construct a hash function. In CRYPTO (2005), V. Shoup, Ed., vol. 3621

of Lecture Notes in Computer Science, Springer, pp. 430--448.

[7] Damgård, I. B. A design principle for hash functions. In Proceedings on

Advances in Cryptology (New York, NY, USA, 1989), CRYPTO '89, Springer-

Verlag New York, Inc., pp. 416--427.

[8] Dodis, Y., Ristenpart, T., Steinberger, J. P., and Tessaro, S. To Hash or Not

to Hash Again? (In)Differentiability Results for H2 and HMAC. In CRYPTO

(2012), pp. 348--366.

[9] Leurent, G., Peyrin, T., andWang, L. New Generic Attacks against Hash-Based

MACs. In ASIACRYPT (2) (2013), K. Sako and P. Sarkar, Eds., vol. 8270 of

Lecture Notes in Computer Science, Springer, pp. 1--20.

36

[10] M. Bellare, R. C., and Krawczyk, H. Request For Comments: 2104, HMAC:

Keyed-Hashing for Message Authentication, 1997. IETF Working group.

[11] Maurer, U. M., Renner, R., and Holenstein, C. Indifferentiability, impossibility

results on reductions, and applications to the random oracle methodology. In

TCC (2004), M. Naor, Ed., vol. 2951 of Lecture Notes in Computer Science,

Springer, pp. 21--39.

[12] Merkle, R. C. OneWayHash Functions and DES. In Brassard [5], pp. 428--446.

[13] Peyrin, T., Sasaki, Y., and Wang, L. Generic Related-Key Attacks for HMAC.

In Sako and Wang [15], pp. 580--597.

[14] Rivest, R. L. Request For Comments: 1320, The MD5 message-digest algo-

rithm, 1992. IETF Working group.

[15] Sako, K., and Wang, X., Eds. Advances in Cryptology - ASIACRYPT 2012 -

18th International Conference on the Theory and Application of Cryptology

and Information Security, Beijing, China, December 2-6, 2012. Proceedings

(2012), vol. 7658 of Lecture Notes in Computer Science, Springer.

37

	Introduction
	Ensuring confidentiality
	Ensuring Integrity and Authenticity

	Cryptographic Hash Function
	Construction of Hash Function
	Good Hash Function

	HMAC

	Related work
	Peyrin et al.'s work
	Patch proposed by Peyrin et al.
	Patch P0

	Dodis et al.'s work
	Key padding
	Ambiguous keys
	Colliding keys

	Our Contribution
	Motivation and Research Problem
	Insecurity of patch proposed by Peyrin et al.
	Hash H is Collision, Preimage and Second Preimage Resistant
	HMACP0-HP0(K,M) is not secure
	HMACP0-H(K,M) is secure in the Random Oracle Model
	Insecurity of any public and reversible patch
	Hash HP is CR, PR, Second PR
	HMACP-HP(K,M) is not secure

	Our two new patch proposals
	Secret Patch
	Secret Patch SP(K,M)

	One way Patch Ow(M)
	Collision Resistant One Way Patch CrOw(M)

	Comparison

	Preventing weak keys based attack with our patches
	Existence of colliding pairs
	Existence of ambiguous pairs

	Security against attacks
	Indifferentiability attacks based on colliding pairs

	Conclusions and Future work

